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Abstract. The Green function for a relativistic particle interacting with a gravitational point 
source and a nux conhed at the origin of the (p. +)-space is evaluated using Feynman's 
summation-over-histones. The bound state energy spectrum is calculated when a uniform 
magnetic field is applied perpendicular to the (p. +)-space. 

1. Introduction 

The discovery of anyons [ 11 as quantum states that are neither fermions nor bosons 
has evolved into a very active research area in recent years. The attraction to this field 
partly lies in the role of anyons in investigating high Tc superconductivity [2 ]  and the 
fractional quantum Hall effect [3], as well as its link to a network of ideas that include 
the Aharonov-Bohm effect [4], cosmic strings [ 5 ] ,  and (2+ 1)-dimensional gravity [6]. 
In fact, the presence of a gravitational anyon, in analogy to the electromagnetic case, 
has also been recently shown. The gravitational anyon can be exhibited with [7], or 
without [8] gravitational Chern-Simons term and it is the latter type that we consider 
in this paper. Specifically, we examine the system with a gravitational anyon and 
subject it to a uniform magnetic field. This generalized scenario is investigated here 
using the Feynman path integral [9]. 

We begin in section 2 by presenting a path integral approach to electromagnetic 
and gravitational anyons using the system discussed in [8], i.e. without a uniform 
magnetic field. The Green function for a relativistic particle interacting with a point 
source of spin U and magnetic Eux Q, is then evaluated as a summation-over-histories. 
The fractional angular momentum appears in a natural way as a 8-function constraint 
in the path integral. The Green function is obtained in closed form in section 3, in 
which the electromagnetic and gravitational anyons are contained as special cases. 

In section 4, we generalize the system by introducing a uniform magnetic field 
perpendicular to the two spatial dimensions (p, 4). The Green function is evaluated 
for this case where the 8-function constraint in the path integral again yieIds the 
fractional angular momentum t' characterizing the electromagnetic and gravitational 
anyons. The presence of a uniform magnetic field gives rise to a harmonic oscillator 
type radial path integral and produces a bound state energy spectrum for the charge-Eux 
(electromagnetic anyon) and the energy-spin (gravitational anyon) composites. The 
energy spectrum is obtained from the poles of the evaluated Green function. 

0305470/93/205461+ 1 S07.50 @ 1993 IOP Publishing Ltd 546 1 
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2. Electromagnetic and gravitational anyoos: a unified approach 

The gravitational anyon without the Chern-Simons term was demonstrated by Cho et 
aL [SI by considering the (2+ 1)-dimensional Einstein gravity and electrodynamics in 
a unified manner. This was done using a (3+ 1)-dimensional Kaluza-Klein metric 
given by 

ds2=gu dx‘dx’+(dO+A, dx‘)2 (2.1) . .  

where gil(i, j = 0, 1,2) is the (2+ 1)-dimensional spacetime metric, A, is the electromag- 
netic potential, and 8 is the ‘internal’ coordinate associated with the U( 1) gauge group. 
Taking the two ‘external’ spatial coordinates as (p ,  +), one introduces a magnetic flux 
0 at the origin by choosing the potential, Ai = ( @ / 2 ~ )  &+. When gij in (2.1) describes 
a Bat spacetime, this choice of At gives rise to the electromagnetic anyon (charge-flux 
composite) as discussed in [8]. The existence of the gravitational anyon, on the other 
hand, comes from the choice of 8,. Specifically, the metric (2.1), with the flux @, can 
be written as [SI 

ds2= -[df + ( u / 2 ~ )  d+12+dp2+ (1  -p )2p2d+2+[d t J+(4 /2~)  d+]’ 
(2.2) 

where U is the spin and p is the mass of the gravitational point source introduced at 
the origin of the (p, +)-space [6]. 

One can apply the transformations, 

t +  i= t + ( ~ / 2 ~ ) 4  (2.3n) 

++6 = (1 -p)+ (2-36) 

8-t I?= 0+(@/2T)+ (2.3c) 
which recasts (2.2) into a flat form (except the singularity at the origin, p=O) [6,8]: 

d?= -di2+dpZ+p2 dP+dI?’. (2.4) 
To provide a path integral treatment of the electromagnetic and gravitational anyons 

let us now consider a particle of mass M which interacts with the gravitational point 
source and Bux @ and obeys the Klein-Gordon equation 

(U- M2)G(x”,  x’)= -S(X”-x’) (2.5) 
where, 0 = g”’V,V,. and g,,, is the metric of the spacetime described by (2.2), or (2.4) 
if one applies the transformations (2.3a)-(2.3c). The Green function G(x”, x‘) can be 
expressed as the path integral [9,10] 

G(x“, x‘) = (i/2#1) exp[-iM2A/2h]K(x”, x’; A) d h  Iom 
where K(x” ,  x‘; A) is the propagator for the particle that goes from x’ to x“ and is - 
parametrized by a timelike variable A (0 CA C A ) .  This propagator can be written as - 
an integral over all possible paths 

K ( x ” ,  x‘; A) = exp[iS/h]9[xl (2.7) 

where the action for the particle is S =jt [(1/2)g,,P;i.”] dA, and ip = dx’/dA. We 
I 



Path integral treatment of the gravitational anyon 5463 

note that the propagator (2.7) satisfies a Schrodinger-like equation [9, lo] 

. JK 
I - =  -OK 

JA 

where A serves as the time parameter and K satisfies the condition 

lim A-0 K ( x " ,  x'; A) = S(x"-x'). (2.9) 

The explicit evaluation of equations (2.6) and (2.7) for the electromagnetic and 
gravitational anyons is given in the following section. 

3. Topologically constrained path integral 

We shall now evaluate the propagator K(x",  x'; A), equation (2.7), and use the result 
to calculate the Green function, G(x", x'), (2.6). For convenience, the transformed 
metric (2.4) is taken as the starting point and the action S is then simply, 

S = loA (1/2)[ - p+pz +p2$+ $1 dh (3.1) 

where x p  = dx'/dh. Since the space being considered has a singularity at the origin 
of the ( p ,  J)-space, the paths, in going from (p ' ,  &') to (p",  $'), can be classified into 
homotopically inequivalent classes depending on the number of times n they wind, 
clockwise or anticlockwise, around the singularity [ll,  121. One can, therefore, decom- 
pose the propagator (2.7) in terms of the winding number n and write ( 2 =  p, &6) 

m 
K(x'",Z';A)= 1 Kn(G",2';A). 

,I=-m 

Let us first evaluate the case n = O  (no winding). Following Feynman's prescription, 
we slice the timelike parameter A into N-subintervals, E = AI - and write KO, as 

N N-1 

, = 1  1=1 
x fl (1/2niR~)'  n (ip, d<- dp, d6, d h )  

N 
$ ( p z + p z @ )  dh] 

N N - 1  

xK(Z", f')K(8', 8) (1/2rrifie) (pjdpldJl). (3.3) 
]=I j - 1  

The propagator K( i", F'), in (3.3), for the motion along the ?-coordinate is similar in 
form to a free propagator, and hence path integrable, i.e. 

+m 

=(i/2n) I-, exp[-iE(F-f)+(ihE2A/2)]dE. (3.4) 
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On the other hand, the propagator K ( 9 ,  8) in (3.3) for the 'internal' variable is similar 
to that of a particle on a circle [lo]. The evaluation involves its decomposition in terms 
of winding numbers m and yields 

+m 
= (27rihA)-L'2 C exp[i(8'- 6'-27rm)'/2hA] 

m=-m 

which can be re-expressed as 
m 

K ( 3 ,  8)=(27r)-' C exp[ie(8'-8)-(iheZA/2)]. 
c=- 

With (3.4) and (3 .9 ,  the propagator (3.3) can be written as 
+m m 

&(?', 2'; A) = [i/(Zm)'] exp[ - iE( ?'- 7) +ie( 8'- a ) ]  

xexp[i(E'-e2)hA/2]&(p", @; p ' ,  $ r )  
where 

&(P", 6"; P'. 6') 

(3.5) 

(3.6) 

(3.7) 

This type of path integral, (3.7), where a point singularity exists at the origin of the 
( p ,  d)-space, has previously been examined [12]. Its path integration gives the result 

&b", a; P', 6') 
= (1/27rihA) exp[i(p"+p"')/2hA] 

d l  exp[iC( - $')]44( p'p"/i h A) 

where, I( p'p"/ihA), is the modified Bessel function. Using equation (3.8) and the 
relations [ 131 

for, a > 0, b > 0, c > 0, Re Y > -2, where J,  is the Bessel function, and 

(1/2a) s i n { [ ( b 2 + c ' ) / ~ Q ] - ( ~ 7 r / 2 ) } ~ . ( b c / ~ a ) =  x cos(axz)Jv(bx)J.(cx) dx (3.9b) 

for, II > 0, b > 0, c>O,  Re Y >  -1, the propagator (3.6) becomes 

lo- 
m 

Ko(i",f',A)=[i/(27r)3]]I-~dEdPjo+mkdk e=-- exp[i(EZ-e2-k2)hA/2] 

x exp[-iE( P- ?) +ie($- 6') +it'(@- $)]&( p'k)&(p"k).  (3.10) 
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Having completed the path integration of Ko2 ;e can express the propagator (3.10) 
in terms of the original coordinates, i.e. (1; p,  4, 8 )  + (1 ,  p ,  4, e) ,  using (2.3). This gives 
the propagator for n = 0 (no winding) in the original coordinates as 

m 

&(x",x'; A)=[i/(Zrr)'] J - r d E  dkJb+-k dk exp[i(E2-e2-k2)hA/2] 
0=-m 

x exp[-iE(t"- t')+ie(e"- e')] 

x exp{i[-(Eu/Zw)+ (e@/27r) + l ( l  -p)](4"- @)} 

x Jiq( P'k)JIq(p''k). (3.11) 

The expression for the propagator for a given winding number n, can be obtained 
from (3.11) by simply replacing (@'-4') with (+"-+'+27rn). Summing over all 
propagators with different winding numbers, the total propagator can be written as 

x exp[-iE(t"- t') + ie(8"- e')] 
xexp{i[-(Eu/Za)+ (e@/2rr)  + t (1  -p)1(4"- 4'+2m)}  
x Ji.q(p'k)Jici(p"k). (3.12) 

Using Poisson's summation formula 
+m +m 
C exp[in0]=27r 8(0+27rm) 

n=-m m=-m 
(3.13) 

equation (3.12) becomes 

K(x",x';  A)=[i/(Zrr)*] j_bmdE k d k  exp[i(E2-e2-kZ)fiA/2] 

S[ -Eu + e@ + 2 d (  1 - p )  + 27rm J 

m 

a=-_ 

t m  
x 

x exp[-iE(t"- t') + ie(8"- e')] 
x exp{i[-(Eu/27r) + (e@/27r) + t(1- p)](4"- b')} 
x Jiq(p'k)Jiei(P"k). (3.14) 

The integration over d e  is facilitated by the &function in (3.14). This &function 
constraint, however, means that non-zero contributions to the total propagator comes 
from those with a fractional angular momentum e given by 

(3.15) 

where, m = 0, *l, *2, . . . . When U = p = 0, one obtains the electromagnetic anyon 
(charge-flux composite) with the angular momentum 

e= - (e@/Zrr)+m m=0,*1,*2 ,.... (3.16) 

On the other hand, when @ = p = 0 in (3.14), the system exhibits a gravitational anyon 
(energy-spin composite) with a fractional angular momentum [8] 

e = ( E u / 2 H ) t m  m=O,*I,k2 ,.... (3.17) 

m=-m 

P =  [(&/27r) -(e@/Zn) - m]/M - p )  
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From (3.14) the resulting K(x”, x’; A) upon integration over d e  can be written as 

K(x”,x’;A)=i j y I d i 5  i0+-kdk C exp[i(E’-eZ-kZ)fiA/2] 
m 

5mD-m 

x v E h e ( ~ ” ~ ~ * E k m . ( X ’ )  (3.18) 

where the station- wavefunction for the A-evolution is given by 

~ v E ~ . ( x )  = ( 1 / 2 ~ )  exp[i(-Et+ eo+ m 6 ) l J l e l ( p k )  (3.19) 

and, a = ( E u / ~ v )  -(e@/2?r). With (3.18) we can now proceed to evaluate the Green 
function (2.6) which involves integration over A. This gives 

(3.20) 

where the limit E J O  is implied, and the wave function is given by (3.19) where the 
coefficient becomes ( Z V ~ ) - ’ .  For the electromagnetic anyon (U = p = 0), the wave 
function acquires the form found in 181. 

4. Gravitational anyon in a uuiform magnetic field 

One &I subject the electromagnetic and gravitational anyons discussed in the preceed- 
ing sections to a uniform magnetic field B by choosing the electromagnetic potential 
in (2.1) to be of the form 

Ai = [(@P/~v)+ (Bp2/2)1 ad. (4.1) 
. When the magnetic field B which is perpendjcular to the (p,  +)-space is zero, then 
the system reduces to the one discussed in the previous sections. With (4.1) plus a 
gravitational point source, (2.1) becomes 

ds2= -[dt+ (u/271) dq5]’+dp2+(1 - ~ ) ~ p ’  d+2+{dO+[(@/2~)+(Bp2/2)] dd}’. 
(4.2) 

Application of the transformation 

d t+di=dt+(u /2V)d+ (4.3a) 

d e +  d g =  dB+[(@/2~)+(Bp~/2)1 dd (4.3c) 
d+ * d$ = (1  - p )  d+ (4.36) 

reduces (4.2) to a flat form given by (2.4) (except for the singularity at the origin). We 
can then consider a relativistic particle obeying the Klein-Gordon equation (2.5) where 
the Green function G(x“, x3 can be written as the path integral (2.6) with (2.7). Using 
the flat form of the metric, the propagator can be decomposed in terms of the winding 
numbers as in (3.2) in view of the singularity at the origin. The path integration for 
the i and 0 variables proceeds as in section 3, and we obtain for zero winding (n = 0)  

KO(?’’, 2’; A) =[i/(2d2] d E  exp[i(E2-e2)hA/2] 

xexp[-iE(i“- P)+ie(tP- $)] 

+m CO I-- e--- 
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(4.4) 

At this stage, only the component for the ( p ,  $)-space needs to be path integrated. 
We also note that g, unlike (2.3c), now depends on p and the path intesration over 
dp has to account for this. From (4.3a)-(4.3c), the terms (P- f), (e"-@'), and 6 in 
(4.4) can be expressed, respectively, as 

(4.Sa) P- P = t"- t'+ (u/2?r)(4/- 6') 

e"-$= e"-e'+ [ ( @ / ~ ~ ) + ( ~ p ~ / 2 ) 1 d +  (4.5b) 

(4.Sc) 

We observe that in transforming back to the original coordinates, (t, p.  @, e) ,  equation 
( 4 . 5 ~ )  is already in terms of the endpoints (t", 4/; f', 4') and involves no further 
integration (the same situation occurs in section 3). Equation (4.Sb), however, differs 
from section 3 due to a non-vanishing B-field. With (4.5), equation (4.4) acquires the 
form 

Ko(x",x'; A)=[i/(2a)'] d E  exp[i(E2-e2)fiA/2] 

x exp[-iE(t"- t') + ie(0"- e')] 

x exp{i[-(Eu/2?r) + (e@/2?r)](@"- @')}KO( p". 4"; p', 4') 

J 
$=(l  --IL)@ 

+m m I_.. e=-- 

(4.6) 

where 

KO(P'', 6"; P' ,  @'1 

with the short-time action (let p = heB/4, which is a constant) 

Sj( p, 4) = jAJ $( p2+p2(1 -/1)'42+2/3pZ4) dh. (4.8) 
A,.l 

The path integration of (4.71, with (4.8), can be simplified by introducing a new angular 
variable y defined by 

Y = ( 1 - - I L ) @ + ( B / l  --ILIA (4.9) 

such that (note: x"= dx'ldA) 

9 2 -  (@/1 -py= (1 -p)2@+2PW 

With (4.10) the short-time action (4.8) becomes 

(4.10) 

(4.11) 
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where, o ' = ( p / l - p ) * .  We also note that with (4.9), we have, yj= y ( e j ) =  
(1 - p)+j + (p/1- p)Ej, where zj = Ai - = constant, since A is sliced into N equal 
sub-intervals. Hence, for the measure we have, dr, = (1 - p )  d+j, or the relation 

N-I N-1 
ll [ ~ j d ~ j ( l - p ) d + j I =  Il [ ~ j d ~ j d ~ l .  (4.12) 

i-1 1-1 

With (4.11) and (4.12), the propagator (4.7) can be written as 

KO( P". 7"; P', 7') 

with the short-time action [ 121 

Sj(p, 7 )  (Apj)'/2& +b:(Ayj)2/2~ + h2&/86;- o2bj&/2 (4.14) 

where, Apj = p, - pj-l, Ayj  = yj - yj-, , and 6; = pjpj-, . We can extract the angular part 
from (4.13) and (4.14) and path integrate in the universal covering space [ I l l  where 
-a)< y <  +a). The angular part A(y", 7') gives [I21 

m 

= [2a(p'p")'/23-' exp[it(y"- y') ]  

N 

j-1 
x n exp[-iht%/2$:] de. (4.15) 

With (4.15), equation (4.13) becomes, 

where only the radial part Kt( p". p ' )  needs to be path integrated 
,, I -1/2 &( P", P' )  = ( P P ) 

x lim 

x n ( 1 / 2 A h ~ ) " ~  n [dpj]. 

n exp{( i /h ) [ (A~~)~ /2~  -(& 1 / 4 ) h 2 ~ / 2 ~ ~ - - - w 2 ~ ~ ~ / 2 ] }  
N + m  j-I 

N N-l 

131 j = 1  

I" 
(4.17) 

Equation (4.17) is just the radial path integral for the harmonic oscillator whose 
evaluation yields 

Kl(p", p ' )  = (o/ih) cosec(oA) exp[(io/2h)( p"+p"') cot(oA)] 

x Aq[(o/ih)p"p' cosec(oA)]. (4.18) 

With (4.6), (4.16) and (4.18), the path integrated propagator for zero winding (n = 0) 
is, 

+m m 
K,(x",x'; A)=[i/(Z?r)'] d E  d t  C exp[-iE(t"-t')+i&(8"-8')] 

e=-- 
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xexp(i[-(Eu/27r)+(e@/27r) +l ( l  -p)I(+"-+'))  

x exp{i[E'- e'+ (2@)/(1- p)h]hA/2} 

x ( o / i h )  cosec(wA) exp[(iw/2h)(pf'+p") cot(oA)] 

x Ilrl[(o/ih)p"p' cosec(wA)]. (4.19) 

To obtain the form of the propagator K .  for a given winding number n, we replace 
the term (+"- 4') in (4.19) by (+"-4'+27rn). Summing over all K,s, as in (3.2), the 
propagator (2.7) can now be written as 

K(x", x'; A) = [i/(27r)'] 

5469 

+a m m  

d E  d l  6[ -Eu+ e@ +27rl(l- p )  + 2 m ]  
I - m  <=-m m=-m 

x exp[ -iE( t"- t') +ie( 8''- e')] 
x exp(i[-(Eu/27r) + (e@/27r) + l(1 -@)I(+"- +')} 

x exp{i[E2- e'+ (243)/(1- p)h]hA/2) 

x (o/ih) cosec(wA) exp[(iw/2fi)( p"+pn) cot(oA)l 

x 4cl[(w/ih)p"p' cosec(wA)]. (4.20) 

In (4.20), we applied Poisson's summation formula to write 

w 

= (27r) 6 [ - E u f  e@ +27rl( 1 - p )  + 2 m  I. 
m=-m 

(4.21) 

The &function in (4.20) acts as a constraint that yields a fractional angular momentum 
given by (3.15). From this the angular momenta for the electromagnetic anyon, (3.16), 
and gravitational anyon, (3.17), can again be obtained as special cases. 

Integrating the variable l, the resulting K(x", x'; A) can be used to evaluate the 
Green function, (2.6), which now acquires the form 

G(x", x') = (2i)-'/(27rih)' d E  exp[-iE(t"-t') 
+m m 

j - m  +m=-m 

+ ie( 8" - 8') + im( 4"- 4')] 

x jo+m exp{i[E2- e2-(M/h)'+2p(m + u)/(l  -p)'fi]fiA/2) 

xcosec(oA) exp[(io/2fi)( p"+p"*) cot(wA)] 

x 4 ~ l [ ( w / i f i ) p " p ' c o s e c ( w A ) ] o  d h  (4.22) 

where f i  = (heB/4) ,  01 = (Eu/271) - (e@/27r). The last three factors represent the radial 
part of a symmetric harmonic oscillator propagator corresponding to the fractional 
angular momentum, l = l ( m + a ) / ( l  -p)1. We can, therefore, write 

[o/i sin(wA)] exp[(io/2h)(p"+p"*) c o t ( w A ) ] ~ ~ ~ ( w / i h ) p " p ' c o s e c ( w A ) ]  
m 

= R.Jp")R.,t(p') exp[-i(2n,+f'+ l)wA] 
",=O 

(4.23) 
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where n, = 0,1,2,. . . , is a radial quantum number and Rn4( p )  are normalized eigen- 
functions in tenns of the generalized Laguerre polynomials L:(x)  

~ , ( p )  = [(2n,!)ot+1/r(n, + e+ 1 ) ] 1 / 2 ( p /  h)!'' exp(-op2/2tt)~~,(op'//h) (4.24) 

Inserting (4.23) into (4.22) and integrating over h we arrive at the Green function 

(4.25) 

where the limit E + O  is implied, K2=E2-e2-(M/h)2t  2w(m+a)/(l-p)h, and 

YEnFI(x)= ( 1 / 2 ~ h )  exp[i(-Et+ee+m(p)]R,~(p). (4.26) 

The energy levels are obtained from the Green function as poles in the variables K' 

in the points 

K *  = (2fl,+f+ 1)(2OJ/h). (4.27) 

Equation (4.27) yields the energy spectrum, 

E = *{(n,+ 1/2)eB/(1 - p )  + e'+ (M/h)'}' / ' .  (4.28) 

5. Conclusion 

In this paper, we have presented the following: 

where the fractional angular momentum manifests as a S-function constraint; and 

of a uniform magnetic field where a bound state energy spectrum is obtained. 

path integrable system in the realm of Kaluza-Klein theories [ 141. 

(i) a unified path integral treatment of the gravitational and electromagnetic anyons 

(ii) an investigation of the gravitational and electromagnetic anyons in the presence 

We also note that the above evaluation provides another example of an exactly 
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